Heavy-tailed random error in quantum Monte Carlo.

نویسنده

  • J R Trail
چکیده

The combination of continuum many-body quantum physics and Monte Carlo methods provide a powerful and well established approach to first principles calculations for large systems. Replacing the exact solution of the problem with a statistical estimate requires a measure of the random error in the estimate for it to be useful. Such a measure of confidence is usually provided by assuming the central limit theorem to hold true. In what follows it is demonstrated that, for the most popular implementation of the variational Monte Carlo method, the central limit theorem has limited validity, or is invalid and must be replaced by a generalized central limit theorem. Estimates of the total energy and the variance of the local energy are examined in detail, and shown to exhibit uncontrolled statistical errors through an explicit derivation of the distribution of the random error. Several examples are given of estimated quantities for which the central limit theorem is not valid. The approach used is generally applicable to characterizing the random error of estimates, and to quantum Monte Carlo methods beyond variational Monte Carlo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Calculation of Risk Measures by Importance Sampling – the Heavy Tailed Case

Computation of extreme quantiles and tail-based risk measures using standard Monte Carlo simulation can be inefficient. A method to speed up computations is provided by importance sampling. We show that importance sampling algorithms, designed for efficient tail probability estimation, can significantly improve Monte Carlo estimators of tail-based risk measures. In the heavy-tailed setting, whe...

متن کامل

E¢ cient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks

The contribution of this paper is to introduce change of measure based techniques for the rare-event analysis of heavy-tailed stochastic processes. Our changes-of-measure are parameterized by a family of distributions admitting a mixture form. We exploit our methodology to achieve two types of results. First, we construct Monte Carlo estimators that are strongly e¢ cient (i.e. have bounded rela...

متن کامل

Improved Algorithms for Rare Event Simulation with Heavy Tails

The estimation of P(Sn > u) by simulation, where Sn is the sum of independent, identically distributed random varibles Y1, . . . , Yn, is of importance inmany applications. We propose two simulation estimators based upon the identity P(Sn > u) = nP(Sn > u, Mn = Yn), where Mn = max(Y1, . . . , Yn). One estimator uses importance sampling (for Yn only), and the other uses conditional Monte Carlo c...

متن کامل

Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error

Efficient estimation of tail probabilities involving heavy tailed random variables is amongst the most challenging problems in Monte-Carlo simulation. In the last few years, applied probabilists have achieved considerable success in developing efficient algorithms for some such simple but fundamental tail probabilities. Usually, unbiased importance sampling estimators of such tail probabilities...

متن کامل

Bayesian estimation of the tail index of a heavy tailed distribution under random censoring

Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index and their consistency and asymptotic normality are established. Finitesample properties of the proposed estimators are investigated via simulations. Tail index...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 77 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008